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1 Representation Definitions

Why study representation theory? We would like to visualize difficult lie groups and algebras using tech-
niques from linear algebra. First, let’s talk representations generally then summarize some important notions
regarding representations of Lie groups and algebras.

A representation of a group G is a vector space V and a homomorphism ρ : G → GL(V ).

• ρ(gw) = ρ(g)ρ(w)

• For today, V ∼= Cn.

• Note that people usually denote ρ(g)v as g · v, where you’re ‘multiplying’ a group element by a vector
(via the corresponding linear transformation).

We call the Vector Space V a representation of G paired with the homomorphism ρ.

A homorphism between two representations V,W on the same group G is a linear map φ : V → W .

• This map commutes with the action of G : φ(ρ(g)v) = ρ(g) · φ(v)

V W

WV

ρ(g) ρ(g)

φ

φ

• The space of G−morphisms between V and W is denoted by HomG(V,W ).

• These homomorphisms between representations are often called ‘intertwining operators,’ which is what
I’ll call them.

Given some representation V of G, a subrepresentation is a vector subspace V ′ ⊂ V where ρ(g)v′ ∈ V ′

for every g ∈ G, v′ ∈ V ′. This subspace is invariant since any matrix ρ(g) acting on a vector v′ ∈ V ′ will
still result in a vector in V ′.

A non-zero representation V of group G is irreducible if its only subrepresentations are 0 and V .

V is indecomposable if V ̸= V1 ⊕ V2, where V1 and V2 are G representations.
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Are ‘indecomposability’ and ‘irreducibility’ essentially equivalent? Not necessarily if the group in question
is infinite. Take the following example:

Z → GL(2,R), ρ(1) =
(
1 1
0 1

)

The action on any n ∈ Z on vector

(
x
y

)
will be

ρ(1)n
(
x
y

)
=

(
1 n
0 1

)(
x
y

)
=

(
x+ ny

y

)

Consider the unidimensional subspace V1 = span

{(
1
0

)}
. Check to see if it is invariant:(

1 n
0 1

)(
c
0

)
=

(
c+ 0
0 + 0

)
∈ V1

So, this representation is reducible since there is exists a nontrivial invariant subspace V1.

Can we decompose R2 as the direct sum of two invariant subspaces V1 and V2? Let V2 to be the span of e2:(
1 1
0 1

)(
0
1

)
=

(
1
1

)
/∈ V2

We cannot separate R2 into the direct sum of two invariant subspaces. Thus reducible but indecomposable.

As an important remark, these notions are equivalent for finite groups with our V of characteristic 0.

Before we show that, let us note that if V and W are G−representations, their direct sum V ⊕W and their
tensor product V ⊗W will be representations given by the following:

V ⊕W : ρ(g)(v + w) = ρ(g)v + ρ(g)(w)

V ⊗W : ρ(g)(v ⊗ w) = ρ(g)v ⊗ ρ(g)w

HomG(V,W ) is also a G−rep:

(ρ(g)(φ))(v) = (gφ)(v) = g · (φ(g−1 · v)) = ρ(g) · (φ(ρ(g−1) · v)
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2 Intertwining operators and Schur’s lemma

Theorem. Let V,W be irreducible complex reps of a finite group G.

(1) Then, either V ∼= W , dim HomG(V,W ) = 1, or

(2) dim HomG(V,W ) = 0.

Proof. Take φ ∈ Homg(V,W ). Note that Kerφ and Imφ are subrepresentations of V .

φ(g · v) = gφ(v) = g · 0 = 0 ∈ Kerφ

g · w = g · φ(v) = φ(g · v), g · v ∈ V =⇒ g · w ∈ Imφ

[Both possible by G-equivariance as established above]

If φ is nonzero, since V is irreducible then Kerφ = 0. Imφ must be equal to W in that case too since W is
also irreducible. We conclude that V ∼= W .

What if V = W? Take λ, an eigenvalue of φ. Since we are with base field C, then

φ− λI ∈ HomG(V,W )

This has a nonzero kernel and we conclude that it is 0. φ = λI and thus it is an isomorphism.
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3 Maschke’s Theorem

If G is finite (V ∼= Cn), then every indecomposable representation is an irreducible representation.

Proof. Let’s start with the lemma that every unitary representation is completely reducible.

A complex representation V of a group G is called unitary if there is a G-invariant inner product: (gv, gw) =
(v, w), or equivalently ρ(g) ∈ U(V ) for any g ∈ G.

As a remark, this is equivalent to a positive definite Hermitian form:

1. Sesquilinear

2. Conjugate symmetry

3. Positive definite (v, v) > 0

We will do a proof by induction on dimension. Either V is irreducible and so we are done, or V has a
subrepresentation W .

Then V = W ⊕W⊥, where W⊥ is the orthogonal component of the subspace W .

• Show that W⊥ is a subrepresentation. If w ∈ W⊥, then (gw, v) = (w, g−1v) = 0 for any v ∈ W
(because g−1v ∈ W ). We conclude that gw ∈ W⊥.

We continue this logic until we reach irreducible components such that

V = ⊕Wi

Now, it remains to be shown that a representation of a finite group is unitary.

Take some inner product B(v, w) in V . We have no guarantee that it will be G−invariant, so instead we
construct a new inner product B̃ as such:

B̃(v, w) =
1

|G|
∑
g∈G

B(gv, gw)

From this definition we determine that B̃ is positive definite as the sum of positive definite forms, and
G−invariant with the following substitution: gh = g′.

B̃(hv, hw) =
1

|G|
∑
g∈G

B(ghv, ghw) =
1

|G|
∑
g′∈G

B(g′v, g′w)

Therefore this representation is unitary and we are done.
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